Challenge Problems 4

Jacob Terkel

April 13, 2022

Problem Index

Problem	1	2a	2b-2d	3	4	5	6 a	6b-6d
Difficulty $/ 10$	7	5	8	6.75	4.5	4.5	6	8
Category	NT	GM	GM	CO	CO	NT	CO	CO

Key:

- NT: Number Theory . CO: Combinatorics . GM: Geometry

1. Prove that

$$
\lim _{n \rightarrow \infty} \frac{\varphi(n) \sum_{i=1}^{n} \frac{1}{i^{2}}}{n}=1
$$

where $\varphi(m)$ is the number of positive integers less than m relatively prime to m.
2. (a) What is the maximum number of regions a plane can be divided into with m lines?
(b) What is the maximum number of regions three-dimensional space can be divided into with m planes?
(c) What is the maximum number of regions four-dimensional space can be divided into with m hyper-planes?
(d) What is the maximum number of regions n-dimensional euclidean space can be divided into with m hyper-planes?
3. Prove that in any set A of 10 positive integers less than or equal to some positive n there exists some $B \subset A$ such that $|B|=3$, and the sum the the elements in each subset of B is distinct $\bmod n$.
4. Determine the number of 2 -subsets, S, of \mathbb{Z}_{n} (the group of integers mod n) with the property that $S=\{a, b\}$ and $0 \notin\{a, b, a+b, a-b,-a+b,-a-b\}$.
5. Let f_{a}, f_{b}, f_{c}, and f_{d} be distinct positive Fibonacci numbers with the property that

$$
f_{a}+f_{b}=f_{c}+f_{d} .
$$

Prove that $\left\{f_{a}, f_{b}\right\}=\left\{f_{c}, f_{d}\right\}$.
6. (a) What is the number of paths you can take from the point $(0,0)$ to $(2 n, 0)$ without going below the x axis with the options $(1,1),(-1,1)$, and $(0,1)$ for steps.
(b) What if you remove the x axis clause?
(c) What if any point with x value $2 n$ suffices as the endpoint?
(d) What's the answer to part c if the x axis clause is reinstated?

